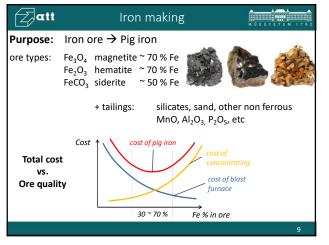
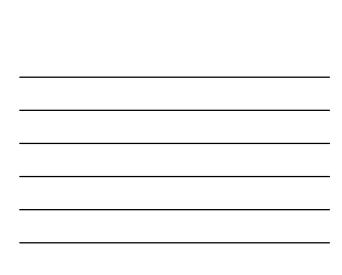
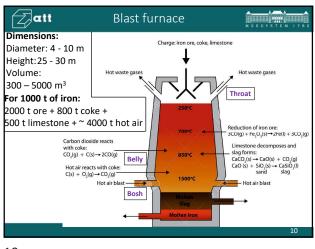
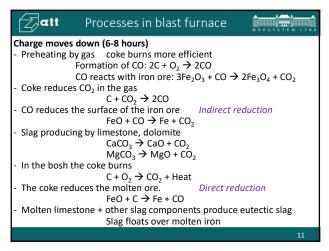

Image: A constraint of the law of mass actionImage: A constraint of the law of mass actionDetermines the direction of the reaction from the dynamic
equilibrium of the intial materials and the product
$$mA + nB \leftrightarrow A_m B_n$$
 $\frac{[A_m B_n]}{[A]^m \cdot [B]^n} = K(T)$ Example: desulfurization $CaO + FeS \leftrightarrow CaS + FeO$
 $\frac{() - in slag}{[] - in molten metal}$
 $\frac{() - in slag sphase}{() - in solid phase}$ 4

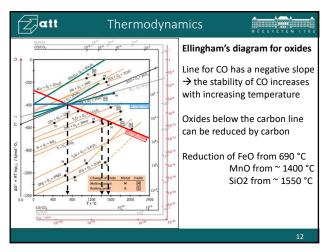
The law of distributionThe law of distributionShows the distribution of an element in different phases $L(T) = \frac{(FeO)}{[FeO]}$ $\begin{bmatrix} () - in slag \\ [] - in molten metal \\ [] - in gas phase \\ <> - in solid phase \\ <> -$

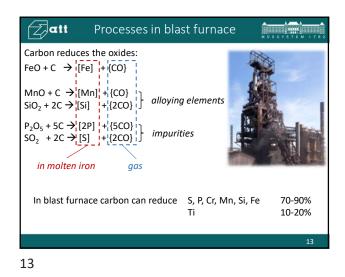


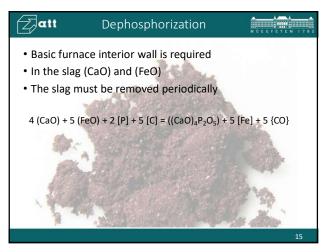


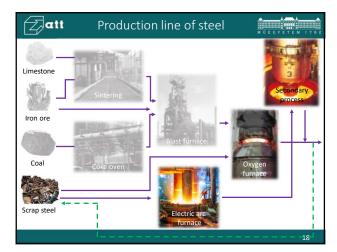



Production line of iron







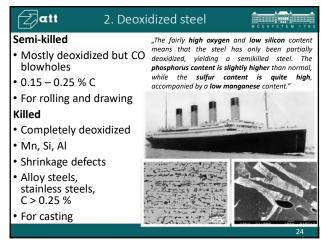

Zatt	Desulfurization	M ÜEGYETEM 1782			
Sodium carbonate based slag					
Na ₂ CO ₃ + [FeS] + 2 [C] = (Na ₂ S) + [Fe] + 3 {CO}					
Na ₂ CO ₃ + [FeS] + 0,5 [Si] = (Na ₂ S) + [Fe] + 0,5 (SiO ₂) + {CO ₂ }					
Calcium oxide (quicklime) based slag					
CaO + [FeS] + [C] = (CaS) + [Fe] + {CO ₂ }					
CaO + [FeS] + 0,5 [Si] = (CaS) + [Fe] + 0,5 (SiO ₂)					
Calcium carbide					
CaC ₂ + [FeS] = (CaS) + [Fe] + 2 [C]					
• Magnesium					
Mg + [FeS] = (MgS) + [Fe]					
		14			

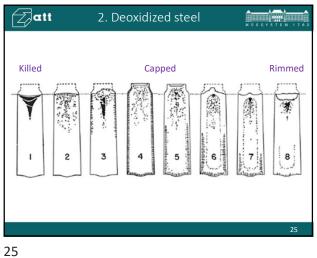
			Million	Oxygen	Electric N	Open hearth N	00ier N	Teol N
	1. Charging	Austria Belgium#	7.4 7.8	90.4	96 317			100.0
		Bulgaria	0.6		100.0			100.0
		Croatia	0.1		100.0			100.0
		Czech Republic	4,4	94.7		1.4		100.0
Durnaca		Finland# Eranva	35	66.8	22.2		-	100.0
Purpose		France Germany	14.4	20.0	30.4			100.0
		Greece	14	70.0	100.0			100.0
		Hungary	1.8	80.1	72.2			100.0
 To decrease C, H, P content 		Bały	23.2	18.1	81.9			100.0
		Luxembourg	2,1		100.0			100.0
		Netherlands	67	100.0	451		1.00	100.0
a Ta inanana haat		Poland Portugal	9.0	54.9	45.1	1.1	1.0	100.0
 To increase heat 		Portuga Romania ^{te}	3.4	67.6	32.4			100.0
		Slovak Republic	5.3	93.0	7.0	× .	-	100.0
(lower C % → highe	r molting point)	Slovenia	0.0		100.0			100.0
	i menng point	Spain	13.6	31.2	68.8	- X -		100.0
	01 /	Sweden	4.7	66.2	32.8	1.141.1	10000	100.0
		United Kingdom European Linion (28)	7.2	78.8	21.2	1.1		100.0
		Turkity	33.7	32.2	67.8			100.0
		Others	52	491	50.9			100.0
		Other Europe	39.0	34.4	65.6			100.0
Oxidation		Russiam	71.9	641	33.6	2.3	1.00	100.0
UXIGATION		Ukraine	20.8	71.2	5.8	23.1		100.0
		Other CIS	8.0	50.7	49.3	65		100.0
		Canada#	12.9	60.6	280		1000	100.0
 Oxygen content from 	m air	Materia	18.5	22.5	77.2	-		100.0
ONYSCH CONTENT HO	ii an	United States	87.6	30.3	49.7			100.0
(Decension Theorem			119.1	32.4	67.6			100.0
(Bessemer, Thomas processes)		Argentina	4.6	45.5	54.5	Sec. 10.	2.00	100.0
		Brazi	32.2	76.1	22.2	1.000	1.7	100.0
 Oxidation with slag (Siemens– 		Chile Venetuela	0.9	76.6	23.4			100.0
		Others	2.9	6.4	916			100.0
· Unuation with slag			41.8	66.1	32.6		1.3	100.0
		Egypt ^H	7.3	2.5	97.5			100.0
Martin aka, open he	Parth electric arc	South Africa	5.7	58.0	41.2			100.0
		Other African Africa	3.8	10.6	89.4			100.0
furnace)		kan	25.6	245	90.4			100.0
		Saudi Arabia	45.0	9.0	100.0			100.0
		Other Middle East**	10.4	-	100.0	1. 141-1		100.0
		Middle East	44.2	\$.5	94.5			100.0
 Ovugen converter a 	rgon - ovvgen	Chinan	996.3	89.6	50.4			100.0
 Oxygen converter, argon – oxygen decarburization, AOD 		India	111.2	43.8	56.2			100.0
		Japan South Korwa	99.3 71.4	75.5	24.5		-	100.0
		Taiwan China	22.0	61.9	31.8	1		100.0
		Other Asian	40.9	36.3	63.7			100.0
		Asia	13451	81.6	18.4			100.0
1		Australia		73.2	26.8			100.0
		New Zealand	0.7	100.0		1.1.	1.00	100.0
Worldsteel Association: World St	ool in Figures 2020	Total of above countries	1 80755	1 21.9	200	1.000	1.000	1000
Wonusteer Association: Wond St	eerin Figures 2020	The countries in this table account	ted for approxi	mately 93.9	is of works of	ude steel on	duction	12019

Zatt	2. Deoxidating	M ÜE GYETEM 1782				
Purpose						
• To reduce increased [O] content due to charging						
Deoxidizing elements						
 Mn, Si, Al, (Ca, Ti, Zr, Mg, etc.) (remember Ellingham's diagram) → Slag formation 						
• [FeO] + Me \rightarrow Fe + (MeO)						
Vacuum deoxidation						
Reducing partial pressure						
 CO is forming, which is removed by vacuum 						
		22				

2. Deoxidized steel

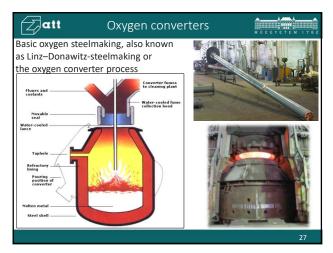
м Û Е О Ү Е Т Е


Rimmed


- Little or no deoxidizing element
- P, S segregation in the middle \rightarrow "pure" Fe \underline{rim} around
- <0.25 % C, <0.6 % Mn
- For cold-working: bending, heading, drawing

Capped

23


- Starts as rimmed
- Cap = covering the ingot, or deoxidizing element
- Less segregation and impurities
- Sheet and strip metals, because of good surface conditions

Zatt	3. Alloying	MÜEGYETEM 1792	
 Alloying elements are added Alloying element prices on London Metal Exchange Resistance against creep https://www.lme.com/ Strenghtening Formability, weldability During steel making, or as a secondary process Commonly in ladles, including deoxidation, degassing 			
Ferro mang	ns of bulk ferroalk anese Ferro chror		

🖓 att Oxygen conve	ert	
Molten pig iron is poured into the	5.	Fluxes (burnt lime, dolomite)
		added to form slag →
0		basicity
dephosphorization	6.	After 20 min. 0.3–0.9% C,
Charging: steel or iron scrap (25 –		0.05–0.1% Mn, 0.001–
30 %, high oxygen content),		0.003% Si, 0.01–0.03% S and
pig iron: 4% C, 0.2–0.8% Si, 0.08%–		0.005–0.03% P
0.18% P, and 0.01–0.04% S, all of	7.	Pouring: steel and then slag
which can be oxidised by the		
supplied oxygen except sulfur	- 1	
(which requires reducing		
conditions).		
Lance "blows" 99% pure oxygen		
	Molten pig iron is poured into the ladle Pretreating: desulfurization, dephosphorization Charging: steel or iron scrap (25 – 30 %, high oxygen content), pig iron: 4% C, 0.2–0.8% Si, 0.08%– 0.18% P, and 0.01–0.04% S, all of which can be oxidised by the supplied oxygen except sulfur (which requires reducing conditions).	Iadle Pretreating: desulfurization, dephosphorization 6. Charging: steel or iron scrap (25 – 30 %, high oxygen content), pig iron: 4% C, 0.2–0.8% Si, 0.08%– 0.18% P, and 0.01–0.04% S, all of which can be oxidised by the supplied oxygen except sulfur (which requires reducing conditions).

over the hot metal \rightarrow CO and CO₂ forms, temp. 1700 °C

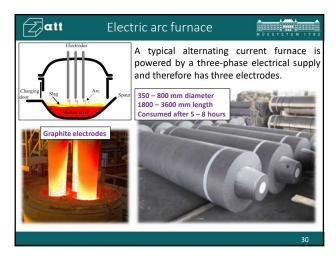
28

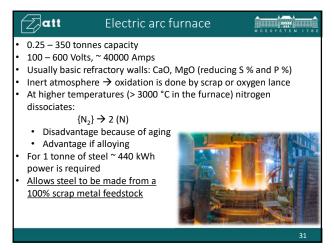
Zatt Argon oxygen decarburization 1

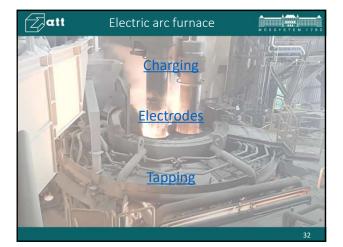
- For stainless steels and high grade alloys •
- After initial melting the metal is then transferred to an AOD vessel • where it will be subjected to three steps of refining; decarburization, reduction, and desulfurization.
- Argon is reducing the partial pressure of {CO} thus the decarburization is more efficient

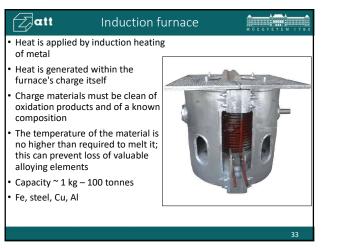
 $4 [Cr] + 3 \{O_2\} \rightarrow 2 (Cr_2O_3)$

 $(Cr_2O_3) + 3 [C] \rightarrow 3 \{CO\} + 2 [Cr]$


Reduction


Reduction of (Cr₂O₃) with higher affinity alloys as: Al, Si


Desulfurization


 $[S] + (CaO) \rightarrow (CaS) + [O]$

